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Abstract. We study the mean-field theory of the three-state chiral Potts model with isotropic 
next-nearest-neighbour interactions. Numerical analysis of the mean-field equations shows 
evidence for an infinite cascade of phases arranged in a Devil’s staircase. This result agrees 
with earlier predictions of the low-temperature expansion technique. 

One problem in the statistical physics of spin-lattice systems is the form of low-tem- 
perature phase diagrams for layered systems. Best known examples are the ANNNI model 
and the three-state chiral Potts model. Their phase diagrams have been studied by 
several workers (cf [l-51 for the ANNNI and [4,6-121 for the three-state chiral Potts 
model) and exhibit an infinite number of modulated phases arranged essentially in a 
stepwise structure. Recently a new version of the three-state chiral Potts model with 
isotropic NNN interaction has been proposed [13] which has a different phase diagram. 
The low-temperature expansion (LTE) analysis of this model shows that modulated 
phases are arranged in an infinite cascade resembling a Devil’s staircase. A similar 
feature has been found in [5] for the ANNNI model in a non-zero magnetic field. 

In this paper the mean-field (MF) theory of the three-state chiral Potts model with 
NNN interactions is reported. We restrict attention to the region where the LTE analysis 
showed the existence of an infinite cascade of phases. First, we define the model. Then 
we discuss the numerical analysis of the modulated phases. To conclude, the results are 
compared with predictions of the LTE technique. 

Let us consider a simple cubic lattice with base vectors {el, e2, es}. The spin at each 
lattice point can assume the values 0, 1, 2 (with addition modulo 3). The three-state 
Pottsmodel with NNNinteraction, first introduced in [ 131, is described by the Hamiltonian 

2 3  2 

x = - (1 + x )  2 - 2 pip; .  
U i = O k = l  “ N  i = O  

Here Pi  is the projection on value i at the point a; if S is a spin configuration, then 
P i ( S )  = 1 is S, = i, and Pi  = 0 otherwise. The second term represents the NNN ferro- 
magnetic interaction, while the first term describes the ‘chiral’ coupling favouring con- 
figurations with s,,,, = S, + 1 (mod 3). A similar model but with chiral coupling only 
has been studied in [7]. The Hamiltonian “de is invariant with respect to uniform trans- 
formations of spins, S + S + k (mod 3), and also with respect to rotations of the lattice 
about the axis (1,1,1).  It is not invariant with respect to reflections in planes per- 
pendicular to (1, 1, 1). Such planes will be called layers. Layers will be numbered in the 
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Figure 1. The general form of the phase diagram found by the LTE technique. Ellipses ( , , , ) 
between phases denote an infinite number of intermediate phases. 

order of their appearance counting from the origin. 
A spin Sa in the layer L, is coupled ferromagnetically with its six NNN spins lying in 

L,. Thus each ground state G is constant in any layer and can be described by a sequence 
of spin values {Gn}, with G, being the value of G in the nth layer. Furthermore, S, is 
coupled ferromagnetically with its threeNNNspinsin layers L,-2and Ln+2, and it interacts 
‘chirally’ with three NN spins in layers L,-l and The competition between these 
two inter-layer interactions leads to the following restrictions on the sequence {G,}. 

(i) If x < 0 then, for any n ,  G,-l = Gntl  # G,. The configuration on the layer L,  
(and the layer L,) is called a. 

(ii)Ifx > Othen,foranyn,G,+l = G, + 1 = G,-l + 2(mod3)(thechiralordering). 
L, is called an o layer, 

(iii) If x = 0, then G can contain both a and o layers, with the restriction that any 
two o layers are separated by an even number (including zero) of a layers. 

Thus any ground state G can be described symbolically by a sequence of o and 
aa = a2. A periodic ground state G corresponds to a periodic sequence A ,  and 

Here n(A)  = 1 if the number of o symbols in A equals zero modulo 3, and n(A)  = 3 
otherwise. 

For the model (1) described above, the LTE technique predicts the phase diagram in 
figure 1. Forx > 0, there are three phases: (0 )  (right chiral), (a20) (corresponding to the 
periodic repetition of the spin sequence 010121202) and (a20a202). For x negative, low 
temperatures are occupied by (a2) and high temperatures by (a20). The intermediate- 
temperature region is filled up by an infinite collection of phases forming the structure 
resembling the Devil’s staircase (figure 2). 

In the MF approximation, we assume that the thermal average of the projection Pi  
is constant through any layer L,, i.e. ( P i )  = nk if a lies in L,. The MF theory of the model 
(1) is described by the Hamiltonian 

(period of G) = n(A) x (length of A ) .  (2) 

CD 2 

X M F  = - 2 2 x (Pi -G)K (3) 
n = - m  a E L ,  i = 1  8. 
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Figure 2. Schematic representation of intermediate phases in figure 1 for x negative. Every 
boundary bifurcates in some order into two boundaries and a new phase appears at its locus. 
The scheme is continued in the way shown on the right-hand side of the diagram. 

H', = 3(1 + ~ ) ( n c ; ~  + niYl1) + 3 n i  + 3(nt+2 + ni-2). 

n', = exp(Hi/T)/[exp(HO,/T) + exp(H,?JT) + exp(H;/T)]. 

(4) 

(5) 

Thermal averages have to satisfy the self-consistency equation 

The system of equations (4) and (5) has a solution ni = 4, which corresponds to the 
paramagnetic phase. To find other phases, we used a numerical procedure first intro- 
duced in [3] for the ANNNI model and then utilised in [6] to study the three-state chiral 
Potts model. First, we assume that the system consists of Nlayers with periodic boundary 
conditions. Our calculations were done for N S 27. Starting for fixed Nfrom some initial 
conditions (see below) which enter into (4), one finds new spin configurations from (5). 
Then the procedure is repeated until the spin configurations obtained in two consecutive 
steps coincide to within some fixed accuracy. The average free energy per spin is 
calculated for every solution from 

N -  2 , 2  

The solution with the least free energy determines the phase of the system for given 
temperature T and perturbation parameter x .  Phases were identified in the following 
way. For each solution of (4) and (5), we define the sequence of spin values 

n = 1,.  . . , N .  
We say that the system is in the phase G which is a small variation of the ground state G 
if 

s, = nf, + 2n2, 

Away from the transition to the paramagnetic phase, all minimal free-energy solutions 
could be associated with some ground state. 

For fixed N ,  the initial conditions were taken to be 
1 i fS ,=i  

S, = [3qn/N](mod 3) 
otherwise 
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for all q = 1, . . . , N .  Here [a] is the integer part of a.  We were motivated in this choice 
by previous work [3,6]. Since ground states of (1) are highly irregular compared with 
the ground states of the ANNNI or the three-state chiral Potts model, we do not expect 
that phases can be simply related to some mean wavevector 4,”. However, it turned 
out that for most N the set of initial conditions (8) is complete in the following sense. If 
there exists a ground state G with period N and such that n ( A )  = 1 in (2), then the 
solution with minimal free energy is close to G in the sense of definition (7). If n ( A )  = 
3, then the structure of the corresponding ground state is too complicated and the set 
of initial conditions (8) does not produce an appropriate solution. For these values of N ,  
we added new initial conditions described by respective ground states: 

Solutions obtained from (9) had free energy smaller than those from (8), which justifies 
our procedure. 

Calculations were performed in three main steps. First, the temperature range was 
scanned at large intervals ( A T  = 0.1). The upper temperature bound was determined 
from the condition (7). Above this, the convergence of our procedure was very poor and 
we did not investigate this region. In all cases, (a2) was found to be the low-temperature 
phase. Forx > -0.08, the high-temperature phase was (a20), which was forx 6 -0.08 
replaced by ( ( c x ~ o ) ~ c Y ~ o )  and for x G -0.09 by (a2oa40). In the second step, the region 
between ( a20) and a high-temperature modulated phase was studied more closely with 
temperature steps AT = 0.01, and with an accuracy for projection averages of lo-’. The 
following intermediate phases appeared: ( d o ) ,  (a40), (a40a20) and ((a202a40). Finally, 
the boundaries between these phases were investigated with temperature steps AT of 
10-5-10-6 and an accuracy of 

The phase diagram obtained in the second step is shown in figure 3 .  In the third step, 
additional phases were found (figure 4). They occupy regions of widths much smaller 
than do the dominating phases of the second step. The phase diagram has all the 
qualitative features predicted by the LTE technique. The only phases with period less 
than 27 which are missing are (a80(a60)2) (period 23) and ((aso)2a60) (period 25). The 
LTE technique predicts here that regions occupied by these phases are of the order of 

compared with the neighbouring phases (cf. 1131). Although one cannot expect 
the LTE technique to give correct values at intermediate temperatures, the discussed 
regions are probably extremely narrow and will not show up with the assumed width of 
temperature steps of In one case ( x  = -0.08), we carried out the more refined 
analysis of the boundary between (a80) and ( d o )  with temperature steps of By 
linear interpolation of free energies (6) we found the phase ((a60)2a80) in the region of 
width We did not go so far with the analysis in other cases. 

Obviously the MF theory of the model (1) is complete only if one considers all values 
of N up to infinity. However, we believe that figures 3 and 4 show the beginning of the 
infinite cascade in figure 2. Further evidence could be obtained if one extends the 
calculations to structures with larger periods, but probably numerical analysis would 
quite soon become ineffective because of the very small variations in the quantities 
involved (e.g. free energy (6)). 

In this paper, we have presented the MF theory of the three-state Potts model with 
NNN interactions. The numerical solution of the MF equations shows a collection of phases 
which are arranged in a cascade resembling a Devil’s staircase. This confirms results of 
the LTE treatment of the model. 
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Figure 3. The phase diagram in the MF approximation for x negative. Narrow regions in the 
vicinity of the boundaries are occupied by additional intermediate phases (cf figure 4). 
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Figure 4. Intermediate phases between (top) ( c y 2 )  and ( ( Y ~ o ) ,  (bottom) ( d o )  and (azo) for 
x = -0.08. 
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